Tulisan ini bertujuan untuk mendemonstrasikan penggunaan
dua program untuk menganalisis butir dengan pendekatan teori respons butir
(IRT). Model yang dipakai kali ini adalah model 2PL.
MPLUS
SYNTAX ANALISIS
Data: File is cdi-diko.dat ;
Variable: Names are gender a01 a06 a08 a10 a11 a13 a05 a12 a26 a27 a03 a15 a23 a24 a04 a16 a17 a18 a19 a20 a21 a22 a02 a07 a09 a14 a25; Missing are all (-9999) ; Usevariables are a01 a06 a08 a10 a11 a13; Categorical are a01 a06 a08 a10 a11 a13; Model:
CDI1 by a01 a06 a08 a10 a11 a13; Output: Standardized ; Plot: Type is plot3 ;
OUTPUT
MODEL RESULTS
Two-Tailed Estimate S.E. Est./S.E. P-Value
CDI1 BY A01 1.000 0.000 999.000 999.000 A06 0.427 0.049 8.714 0.000 A08 0.450 0.053 8.516 0.000 A10 1.013 0.080 12.631 0.000 A11 0.790 0.071 11.100 0.000 A13 0.581 0.056 10.476 0.000
Thresholds A01$1 0.249 0.023 10.730 0.000 A06$1 0.172 0.023 7.444 0.000 A08$1 -0.627 0.025 -25.422 0.000 A10$1 0.706 0.025 28.094 0.000 A11$1 -1.242 0.031 -40.490 0.000 A13$1 -0.666 0.025 -26.763 0.000
Variances CDI1 0.483 0.044 10.879 0.000
IRT PARAMETERIZATION IN TWO-PARAMETER PROBIT METRIC WHERE THE PROBIT IS DISCRIMINATION*(THETA - DIFFICULTY)
Item Discriminations
CDI1 BY A01 0.966 0.086 11.253 0.000 A06 0.311 0.035 8.828 0.000 A08 0.329 0.039 8.508 0.000 A10 0.991 0.093 10.608 0.000 A11 0.657 0.069 9.559 0.000 A13 0.442 0.043 10.353 0.000
Item Difficulties A01$1 0.358 0.038 9.483 0.000 A06$1 0.578 0.098 5.874 0.000 A08$1 -2.003 0.229 -8.755 0.000 A10$1 1.003 0.062 16.309 0.000 A11$1 -2.263 0.179 -12.632 0.000 A13$1 -1.648 0.149 -11.062 0.000
Variances CDI1 1.000 0.000 0.000 1.000
R (ltm)
> F1 <- read.table(file="cdi-diko.dat")[,2:7] > fit <- ltm(F1 ~ z1) > fit
Call: ltm(formula = F1 ~ z1)
Coefficients: Dffclt Dscrmn V2 0.359 1.640 V3 0.585 0.496 V4 -2.014 0.537 V5 0.969 1.834 V6 -2.113 1.263 V7 -1.646 0.732
Log.Lik: -9789.883
Winstep
------------------------------------------------------------------------------------------- |ENTRY TOTAL TOTAL MODEL| INFIT | OUTFIT |PT-MEASURE |EXACT MATCH| | |NUMBER SCORE COUNT MEASURE S.E. |MNSQ ZSTD|MNSQ ZSTD|CORR. EXP.| OBS% EXP%| ITEM | |------------------------------------+----------+----------+-----------+-----------+------| | 1 1200 2987 1.14 .05| .90 -4.9| .84 -4.2| .61 .56| 75.7 73.2| a01 | | 2 1290 2987 .95 .05|1.10 5.0|1.18 4.8| .51 .56| 70.1 72.9| a06 | | 3 2194 2987 -.93 .05|1.05 2.1|1.20 3.9| .47 .51| 77.4 78.1| a08 | | 4 717 2987 2.30 .05| .92 -2.8| .89 -1.5| .58 .55| 83.8 81.5| a10 | | 5 2667 2987 -2.45 .07| .98 -.4| .92 -.7| .43 .41| 89.9 89.9| a11 | | 6 2232 2987 -1.02 .05| .98 -.6|1.08 1.5| .50 .50| 79.2 78.4| a13 | |------------------------------------+----------+----------+-----------+-----------+------| | MEAN 1716.7 2987.0 .00 .05| .99 -.3|1.02 .6| | 79.4 79.0| | | S.D. 688.6 1.0 1.60 .01| .07 3.2| .14 3.1| | 6.3 5.7| | ------------------------------------------------------------------------------------------- |
Korelasi Antar Parameter
Korelasi antar Parameter Daya Diskriminasi : 0.992937519Korelasi antar Parameter Tingkat Kesulitan : 0.999275486
Hasil analisis menunjukkan bahwa korelasi yang dihasilkan mendekati 1, artinya kedua program menghasilkan hasil estimasi yang sama
Tidak ada komentar:
Posting Komentar